Introduction

Visible light has been shown to cause some of the same responses as UVA radiation, including:

- Erythema
- Immediate pigment darkening or tanning
- Formation of free radicals and reactive oxygen species, leading to potential oxidative damage
- Matrix metalloproteinase (MMP)-1 expression, which leads to the breakdown of collagen, the major structural component in the skin, and inhibits collagen synthesis, possibly contributing to photoageing

When commercially available sunscreens were applied, they had little effect on reducing the formation of reactive oxygen species.

Photosensitivity disorders

The most common photosensitivity disorder caused by visible light is solar urtcaria. Others include chronic actinic dermatitis and polymorphic light eruptions.

In one study, it was found that 60% of the patients with solar urtcaria tested were sensitive only to visible light, and not to UV radiation.

Sunscreens that offer protection against visible light might be of considerable benefit to these patients.

Materials and methods

Blue light region photosensitivity testing was conducted on a number of sunscreens containing various organic and inorganic sunscreen filters.

The Photosensitivity Protection Factor (PPF) was determined by applying the following formula, as described by Mosely et al.:

$$ PPD = \left(\frac{E_\lambda S_\lambda T_\lambda}{\int E_\lambda S_\lambda T_\lambda d\lambda} \right) $$

WHERE:

- E_λ = Photosensitivity action spectrum
- S_λ = Spectral irradiance
- T_λ = Spectral transmission of the spectrum
- $\Delta\lambda$ = Wavelength step (1nm)

Results and discussion

Over the range of 400–600nm, there is a substantial difference in the absorbance of the various sunscreens.

The sunscreen with solely organic (chemical) filters showed a rapid decline in absorbance potential above 400nm, while even low levels of the inorganic filters titanium dioxide (2.8%) and zinc oxide (4%) in sunscreens showed a marked improvement.

However, SunSense Sensitive, which uses titanium dioxide (9.8%) and zinc oxide (2%) together, shows a much stronger absorbance, with a PPF of 4.4. SunSense Sensitive Matte, which contains additional low levels of iron oxides, has a PPF of 4.9. This suggests that the combination of oxides may produce a synergistic effect on visible light absorption.

Pigment-containing sunscreens offer protection many orders of magnitude higher than sunscreens with only chemical filters.

Conclusion

Visible light may not be as innocuous as previously thought, and may contribute to photoageing, as well as causing distress for people with photosensitivity disorders.

In addition to offering a very high SPF (50+) and broad spectrum UV protection for people with sensitive skin, SunSense Sensitive and SunSense Sensitive Matte provide significant levels of protection against visible light, and may be of benefit to people with photosensitivity disorders.

SunSense is the UK’s No.1 prescribed sunscreen.

Everyone can enjoy the sun with the UK’s No.1 prescribed sunscreen:

- Studies show that visible light can lead to the formation of reactive oxygen species, proinflammatory cytokines and matrix metalloproteinase (MMP)-1 expression, which can contribute to DNA and cell damage.

- For people in high-risk groups prone to photo-sensitivity, the only way to stay safe in the sun is with a high-factor sunscreen, but many commercial sunscreens offer very little defence against visible light.

- Our research shows that sunscreens containing solely organic UV-filters can offer protection against visible light and broad spectrum UV-protection.

References:
1. NHS BSA prescription services, prescription cost analysis England 2014 data

Protection from skin damage due to visible light

J.P. Townley & K.A. Greive